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TECHNTCAL MEMORANDUM 1413

IMPACT ON A COMPRESSIBLE FLUID¥*

By I. T. Egorov

Upon impact of & solid body on the plane surface of a fiuid, there
occurs on the wetted surface of the body an abrupt pressure rise which
propagates into both medis with the speed of sound.

Below, we assume the case where the speed of propagation of sound
in the body which falls on the surface of the fluid may be regarded as
infinitely large in comparison with the speed of propesgation of sound
in the fluid; that 1s, we shall assume that the falling body is abso-
lutely rigid. 1In this case, the entire relative speed of the motion
which takes place at the beginning of the impact is absorbed by the fluid.
The hydrodynamic pressures arising thereby are propagated from the con-
tact surface within the fluid with the speed of sound in the form of
campression and expansion waves snd are greduslly damped. After this,
they are dispersed llke impact pressuree, reach ever larger regions of
the fluld remote fram the body and became equsl to zero; in the fluid
there remain hydrodynamic pressures corresponding to the motion of the
body after the impact (ref. 1).

Neglecting the forces of viscosity and taking into account, further-
more, that the motion of the £luild begine from & state of rest, according
to Thomson's theorem, we may coneider the motion of an ideal cc:npressible
f£luid in the process of impact to be potential. —

We examine the case of impect upon the surface of a compressible
fluid of a flat plate of infinite extent or of a body, the immersed part
of the surface of which may be called approximately flat. In this report
we discuss the first phase of the impact pressure on the surface of a
f£luid, prior to the appearance of a cavity, since at this stage the
hydrodynamic pressures reach thelr maximum values. Observations, after
the fell of the bodles on the surface of the fluid, show that the free
surface of the fluid at this stage 1s almost completely at rest if one
does not take into account the smell rise in the neighborhood of the
boundaeries of the Impact surface.

1. Let us consider the motion of a £luld in the coordinate sys-
tem Oxy, rigidly connected with the solid body (£ig. 1). In the
selected coordlnate system, we have as the potentiel of the velocity of

*Udar o szhimesemuiu zhidkost." Prikladnaias Matemstika i Mekhanika.
Vol. 20, No. 1, 1956, pp. 67-T2.
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the motion ¢ ~in the cese of the two-~-dimensional problem - the fol-
lowing linearized equation (ref. 2):

[\

2 2 2
_3q>+_aq>=_l___acp ( = —p (l-l)
x® P P V25

Here, ¢ 1is the speed of sound. The boundsry cond:[tions in the case
considered will be, on the free surface of the fluid,

@=0 for |x| >a, y=0 (1.2)
on the surface of the plate,
%::y‘ for Ix' <&, y=0 (1.3)

To the conditions required for a unique determination of the solu-
tion, we add yet another, the condition at infinity. Let us use the
principle of radiation and express the condition that 1t is impossible
to propagate disturbances from infinity inside the flow; in other words,
the waves arising from the impact dissipate at infinity (ref. 2):

T— ®

1lim ﬁ(%’% + ivq)) =0 %?l\/ipl = Constant (1.%)

We shall slso introduce the statlonary system of coordinates 01%1¥y -
We shall plece the axis O;x; on the free surface; the axis Oyy; inside
the fluid.

At the initiel Instent of the impact, the motion of the plate is
determined by the conditions ’

¥, =0 =V for t =0 (1.5)

2. We may continue the function cp(x,y,‘b) to the upper half plane
and obtain the function o¢(x,y,t), which is analytic in the entire
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plane with the exception of the cut |x| e, y =0 vhereby
ox,y,t) = -9(x,-y,t).

We shall seek the partial integral of equation (1) in the form

ox,y,t) = v(x,y)e'Bt (2.1)

Substituting expression (2.1) into equation (1.1), we obtein

2
6_2’4'_...&-3_.*:0 (2.2)
a2 o @

Assuming in this equation x = ax;, y = ay;, we can bring it into
the form

62 2 252
dx2 ﬁ+ vy = 0 .(v2=-ac2> (2.3)

Here, and in what follows, the subscript 1 for the variables x;
and ¥y is onitted.

The function w(x,y) must also satisfy the boundary conditions

¥=0 for |x[{>1,y=0 -g-;%=av for |x|<1,y=0
(2.4)

and also the conditions of the principle of radiation

1im ( +iw) =0 lim |\JT¥ | < Constant for r = VX2 + y25

(2.5)

We introduce the elliptical coordinates & and 17 (fig. 2) with
the aid of the equalities

x = cosh § cos 1 Y = sinh ¢ sin 7 (2.6)
This corresponds to the conformal transformation 2z = cosh { of the

plane 2z = x+ iy into the plane { = ¢ + in. From the relationships
in equations (2.6), there follows
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> -
X + y2 = coszn + sinzn =1
cosh®¢  sinh®t

(2.7)

2 2 - - -
= - X = cosh® - sinh®t = 1
cosen sinz'q

To the lines ¢ = Constant in the {-plane, there corresponds a
family of confocal ellipses in the z-plane and to the lines 17 = Conetant
there correspond a family of confocal hyperbolas, orthogonal to the
family of ellipses. It is easy to see that the region of interest to
us, |x| <1, represents the degenerated ellipse ¢ = O, |n{<=x. To
the region of the coordinate axis x > 1, there corresponds the degen-
erated hyperbola 711 =0, & >0 and to x < -1, the degenerated hyper-
bola 7 =41, & > 0.

We may transform equation (2.3) after substitution of equations (2.6),
wvith the aid of Lamé's relationship (ref. 5)

2 2 2
dzh"*,"hde*g_ﬁ (2.8)
axa dye d§2 dne z .
into the form
2
?_! + 32% + v2(cosh2t ~ cos2n)y = 0 (2.9)

dg2 oy

Assuming its solution in the form ¥(&,n) = F(£)a(n), we cbtain, after
substitution of equation (2.9) for the functions F and G, the equa-
tions of Mathieu

2 : 2 -
8% | (« - 28x cos 29)G = O &F _ (o - 28, cosh 2¢)F = 0 i -
2 o z
an dag
(2.10)
There -
L - aZg2 - oo
By = =12 By = -B 8 = (o 1s & Constant) (2.11)

&=

yc2
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As a result of the fact that « may assume any value, 1t is
necessary - in order to made the solution unique -~ that the function
G(n) in the z-plane should be pericdic, with the period 2x. This

condition defines the multiplicity of eigenvalues “2n+1(°*) where

n=0,1,2, .. .. The corresponding family of fundamental functions
forms s complete orthogonal system.

The function F(E) must be expressed through the modified Mathieu
functions which satisfy the principle of radiation. In accordance with
what has been seid above, we shall seek the potential (t,n) in the
form of an expansion in odd Mathieu functions of odd index

OUEEY aopeiNeo) (8 ,-8)se,, 1 (1, -6) (2.12)
n=0 :

Here, se2n+l( n1,-8) 1s en odd periodic Mathieu function which is

the solution of the first kind of the first equation of (2.10) and is
expressed through trigonometric functions in the form of the series

2n+l
sesn1(1,-8) = (-1)7 Z (-1)Agny sin(er + 1)n (2.13)
=
2n+l .
where A2r+l’ the expansion coefflclents, are functions of 6. The

function Negil(g ,~8) constitutes the combined Mathieu function,

expregsed through the product of the Bessel functions of imaginary
argument in the form of the following series:

(1) 2ip = enel o
gy (,-0) = o ZO Ao I ) () + T ()]
=
(2.14)
Here,

P! =(-l—)l. ce (O e)ce' .1;1( ]
2n+l ontl e+l 2l 7
kAl o

vy = ke"g
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ce2n+l(§,9) is the odd periodic Mathieu function, In(vy) 1s the Bessel
function of imaginary argument, and Km(vz) is a Macdonald function.

The function Ne(l) l(g ,-8) bas the following asymptotic

2n+
representation:

Nell) o p eV (2.15)
2n+l. on+l Vv *

where v = 2k cosh £, whence it is evident that for E — o +the func-
tion (2.15) tends monotonically toward zero. Hence, it follows immed-
iately that the expression we derived for the potential (2.12) satisfies
the principle of radilation.

The function of the potential (2.12) satisfies the first boundary
condition (2.4) since, for n =0 and 17 = #x, the function sey, .4 (n,-8)

is transformed into zero.

For determining the arbitrary integration constant, 854,10 We use

the second boundary condition (eq. (2.4)) which, in the elliptical coor-
dinate system, is written in the form :

ﬂ:av sinn for |ni<=x, §=0 (2.16)
3¢ ‘

SubJecting the expression of the potentisl (2.12) to the condition
(2.16), we obtain

av sin q = z azmlNe;ﬁl(o, -e)se2n+l(n, -8) (jnl< =) (2.17)
n=0

Here
1) 1 aNeéﬁl(g;'e)

Neém_l(o, -8) = (2.18)
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We multiply the equation obtained by se
-t to +x and find

2n+l('q,-e)d.'q, integrate from

o
™ (1)
a.vf 8€p,,1(1,-8)8in q dn = Z a.an_'_lNezn_'_l(O,-e)f 8€5n41 2(n,-0)dy
- n=0
(2.19)
On the basis of the orthogonality of the Mathieu functions
8 2ntl
f seone1(N,-0)sin q dn = (-1)°A;
-1

In conformity with the second condition of normalization of the
Mathieu functions (ref. 4),

14
f,r 8€pp,15(N,-0)dn =

Substituting the values of integrals found into eguation (2.12) and
solving it with respect to a,,.,, we obtain

A 20+l

8onp1 = (-1)2 L av - (2.20)

éﬁll(Os-e)

Substituting, in turn, equation (2.20) into equation (2.12), we f£ind

o (1)

N (g,-8)
v(E,n) = av Z (-l)n 2o+l eilf)-l( ) seon,1(n,-8) (2.21)
n=0 0,-8

Teking into account formula (2.1), we introduce the velocity potential
of the motion of the fluid considered in the form

(1)

p(e,m,t) = a Z ( l)n 2ntl Neeml(g’-e) e2n+l(n,-9)ve-Bt (2.22)
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The expression (2.22) is a partial integral of the wave equa-
tion (1.l1) which satisfies the initial and boundary conditions tha.t-
we set up.

3. The data obtained regarding the flow of the fluid enable us to
turn to the determination of the hydrodynamic forces. For this purpose,
we use Lagrange's integral. Neglecting the weight and the squares of
the magnitudes of the absolute velocity of the fluid, we can find the
overall value of the hydrodynemic forces per unit vidth of the plate.
We integrate the pressure D - pg = -podcp/dt along the length of the
plate and obtain

. a 7€ ]
R¥ = -p 99 gx or R¥ = p f o9 sin 7 an (3.1)
0 s Ot y=0 o8 - ot £=0
= Netal1(0,0) \ onu1)2 a . _-pt
R¥* = po:ta.2 z __D*T___(Al ) —(ve"la ) (3.2)
el (0,-6) av
n=0 o2+l 7’ -

Formule (3.2) is derived for the case of a plate moving in an infi-
nite fluid. But according to the principle of symmetry, the values @
and 0@/dt above and below the axis of the plate are equal in magnitude
and opposite in sign. Hence, it follows that the force acting on the
plate upon impact on the free surface of the fluid is equal to balf the
force acting on the plate in unbounded flow of the fluid:

(1) (0 -6)

nofre? g Raa 0

n-0 Ne 2n+1(°"°)

(1a21) &(veP") (3.3)

For simplification of the further notation we shall write

Ne' L)

o - § 7
=0 Ne, l(0,-9)

(€, (a,2+1)? (5.4)

The diagram of the function Le(6) is presented in figure 3. Let
us note that

1im Le(8) = = for 8- 0 lim Le(8) =0 for & - =
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Thereby, in the first limiting case for € — 0 (which corresponds to &
transition to an incompressible fluid ¢ = ®), the function Le(8) - o

like X—2,

Carrying out the differentistion in formula (3.3) and substituting
equation (3.4) , we obtain the following expression for determining the
force of the impact:

R= -1 ome® Le(oly' (v =veP) (3.5)
Here, y' 1s the speed of motion of the plate during the process of lmpact.

In order to determine the parameter B, we substitute equations (3.5)
into the equation of motion of the plate which, in the case of weightless
impact, has the form my" = -R. As a result, we obtain the transcendental
equation

m = --é- posca.aLe(e) (3.6)

It is not difficult to determine from this equation, for the given quan-
tities m, a, and py, making use of the diegram of the function Le(8)
(:f.‘ig. 3), the value of 6 and, consequently, the value of the parameter
B. (See (2.11).) Teking into account equation (3.6), we obtain the

expression for the force R in the form: R = vae'B{"; vwe integrate
this expression and obtain
t
J = f R dt = m'\r(l - e'Bt) (3.7)
0

This relationship permits us to determine the momentum of the fluid
for any instant of time during the first phase of the impact. Using
formula (3.5) , We can also determine the kinetlc energy of the plate.

Figure 4 shows T = T(t), the variation with time of the kinetic
energy of the plate (m = 100 kg sec? m"l, a=110m, v=5.0m sec‘l)
upon impact on water (¢ = 1,485 m sec~l, Pg = 102 kg sec? m"}"‘); on
ethyl alcohol (¢ = 1,170 m sec=:, p. = T9 kg sec? m’l"); and on pentane
(c = 800 m sec-1, pp = bl kg sec? m~4#). Figure 5 shows for these same

cases the diagram of the variation of the momentum of the plate during
the process of impact.

Translated by Mary L. Mahler
Nationel Advisory Camittee
for Aeronautics
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